Monodromy at infinity of A - hypergeometric functions and toric compactifications ∗

نویسنده

  • Kiyoshi Takeuchi
چکیده

We study A-hypergeometric functions introduced by Gelfand-KapranovZelevinsky [4] and prove a formula for the eigenvalues of their monodromy automorphisms defined by the analytic continuaions along large loops contained in complex lines parallel to the coordinate axes. The method of toric compactifications introduced in [12] and [16] will be used to prove our main theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confluent A-hypergeometric functions and rapid decay homology cycles

We study confluent A-hypergeometric functions introduced by Adolphson [1]. In particular, we give their integral representations by using rapid decay homology cycles of Hien [17] and [18]. The method of toric compactifications introduced in [27] and [31] will be used to prove our main theorem. Moreover we apply it to obtain a formula for the asymptotic expansions at infinity of confluent A-hype...

متن کامل

Rational Hypergeometric Functions

Multivariate hypergeometric functions associated with toric varieties were introduced by Gel’fand, Kapranov and Zelevinsky. Singularities of such functions are discriminants, that is, divisors projectively dual to torus orbit closures. We show that most of these potential denominators never appear in rational hypergeometric functions. We conjecture that the denominator of any rational hypergeom...

متن کامل

Monodromy of A-hypergeometric functions

Using Mellin-Barnes integrals we give a method to compute a relevant subgroup of the monodromy group of an A-hypergeometric system of differential equations. Presumably this group is the full monodromy group of the system

متن کامل

Monodromy zeta functions at infinity , Newton polyhedra and constructible sheaves ∗

By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [15] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.

متن کامل

Monodromy zeta functions at infinity , Newton polyhedra and

By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [17] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008